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Inhomogeneous Kauffman Models at the 
Borderline Between Order and Chaos 
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We study a generalized Kauffman model where the interactions are no longer 
chosen according to a unilbrm probability distribution. It is shown that already 
slight deviations from the uniform distribution can drive the system into the 
chaotic phase, whereas the original model remains strictly in the ordered phase. 
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1. I N T R O D U C T I O N  

Kauffmann 's  model for genetic regulatory systems, introduced in the late 
sixties, ~2~ attracted much interest within the theoretical physics com-  
munityC3 5, serving as a model  of  disordered cellular automata.  

The dynamics  of  these sparsely interconnected systems is governed by 
a r andom mixture of  all possible Boolean rules restricted to a few input 
variables. One remarkable  result is that  the dynamical  behavior  undergoes 
a sharp phase transition from o r d e r e d  to d i s o r d e r e d  behavior  when the 
system has more  than two input variables per model unit. 

One aim in this paper  is to get some more  insight into the principles 
that allow the networks to exhibit such pro lbund order  that  they persist in 
the so-called frozen phase for connectivity K~<2. ~3~ Serving as order  
parameter  is the "Lyapunov- l ike"  normalized Hamming  distance between 
two configurat ions x~t  and x ~-'~ first introduced for Kauffman models by 
Derrida and Pomeau.  c4~ 
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Table I, A l l  Possible Automata Rules for K - - 2  

Inpu t  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

O0 0 I 0 I 0 I 0 I 0 I 0 1 0 I 0 I 
Ol 0 0 I I 0 0 1 1 0 0 I I 0 0 1 1 
IO 0 0 0 0 I 1 I 1 0 0 0 0 I I I 1 
I I  0 0 0 0 0 0 0 0 I I I 1 1 I I I 

2. THE ORIGINAL K A U F F M A N  MODEL 

Kauffman considers a set of N interacting "binary genes" capable only 
of the two values 0 and 1 corresponding to the "off" and "on" states, 
respectively. Each unit is supposed to be influenced by K other units 
jn(i), j z ( i )  ..... j x ( i ) .  These inputs are chosen at random among the N units 
of the network. Each site selects randomly a Boolean function f,. such that 
the dynamical time evolution is given by the parallel update rule 

x i ( t  + 1 ) = f~(x i ,  i~(t) ..... Xmi~(t)) (2.1) 

Note that the Kaufmann model has been specified as follows: 

�9 Each unit i receives exact ly  K inputs. 

�9 The Boolean functions f~ are chosen at random according to a 
uniform distribution. 

For K =  2 all possible rules are listed in Table I. Prominent examples are 
the XOR(6), AND(8) and OR(14) rule. 

Since K =  2 is a critical parameter value, one might expect that small 
fluctuations either in the connectivity or in the homogeneous choice of the 
Boolean rules can easily drive the system into the chaotic regime. In fact, 
it has already been shown c6) that an average connectivity of two inputs 
( K )  = 2 can lead to disordered behavior. 

3. AN I N H O M O G E N E O U S  K A U F F M A N  NETWORK 

Let us now drop Kauffman's assumption that the rules are democrati- 
cally drawn with equal weight from a uniform distribution. We destroy the 
homogeneity with respect to the choice of the interactions and choose rule 
1 with probability p and the 15 others with equal probability ( 1 - p ) / 1 5 .  

In order to study the stability of the network with respect to small 
changes in the initial conditions we define a commonly used order 
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parameter, the normalized Hamming distance between two configurations 
x ~ ~ ) and x (2), 

l N d(t)=~ ~ Ix~"(t)-xC~2'(t)l (3.1) 
i = 1  

This global variable d(t) specifies the fraction of spins being different in two 
configurations. The crucial question is if an initially infinitesimally small 
distance d(0) remains confined or eventually becomes finite in the large- 
time limit. Provided that T is big enough, d(T) serves as a Lyapunov-like 
order parameter for our computer experiments. 

Figure 1 depicts the time evolution of the distance d(t) at concentra- 
tion p = 0.4 for four different initial distances chosen as d(0) = 0.01, 0.1, 0.2, 
and 0.5, respectively. After a transient phase, the distance fluctuates around 
its mean value (d(t))r= o. The fluctuations obey the central limit theorem, 
they are roughly Gaussian and decrease with increasing number of units N 
according to a 1/.v/N law. A surprising observation is that in marked con- 
trast to the original Kauffman model, our inhomogeneous network has to 
be placed in the chaotic phase, since small initial distances obviously grow 
to a finite distance. 

Figure 2 depicts the final distance d(T) for T =  1000 as a function of 
the concentration p for rule 1 with d(0) = 0.05. For  the concentration range 
0 < p < 0.25 the computer simulations cannot decide whether the system is 
in its chaotic or ordered phase. Presumably the system is close to the border- 
line separating ordered from chaotic behavior. However, with increasing 
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Fig. 1. Time evolution of the distance d(t) for variot, s initial distances d(0). 
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Fig. 2. Final distance d ( T =  1000) as a function of tile concentration p. 

value of the concentration p we observe a continuous increase of d(T), 
which reaches its maximum value d,,,,x ~0.354 at Pm,,x ,~0.82. Then the 
distance decreases until distance zero is reached at p,. ~0.88. Figure 2 
suggests that the transition is of second order, which has also been found 
for the homogeneous Kauffman model. ~4~ In fact, additional computer 
experiments confirm that for 106 < N <  107 the linear decrease of d(T) is 
almost independent of the number of units in the parameter range 
p .... ~ 0.82, p,. "~ 0.88. 

Note that the degree of disorder is quite substantial, since the maxi- 
mum possible degree is d =  0.5 corresponding to two configurations chosen 
completely at random. 

4. BINARY MIXTURES OF AUTOMATA RULES 

In order to get more insight into this unexpected behavior, we modify 
our K =  2 model further and admit only t w o  Boolean rules with weight p 
and 1 -  p, respectively. Such a simplified model system of binary mixtures 
of automata rules has already been studied by Hartmann and Vichniac ~7~ 
as well as by da Silva. ~81 Their model lets the units reside on a two-dimen- 
sional square lattice with exclusively short-ranged interactions limited to 
the von Neumann and Moore neighborhood. Since they admit only the 
generalized XOR rule (parity) and the AND rule adapted to five and four 
inputs, respectively, the existence of a transition is obvious. Homogeneous 
automata, where each site obeys a K-input XOR rule, show maximum dis- 
order [d(Qo)=0.5]. On the other hand, homogeneous automata, where 
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F i g .  3. F i n a l  d i s t a n c e  d( T =  1 0 0 0 )  a s  a f u n c t i o n  o f  t h e  c o n c e n t r a t i o n  p .  

Table  II. Dynamica l  Behav io r  of  the  B inary  M i x t u r e "  

0 I 2 3 4 5 6 7 8 9 I 0  11 1 2  1 3  1 4  1 5  

0 + + - -  

1 + - -  + - -  + - -  + + + + + + + - -  

2 - -  + + + - -  + + - -  

3 - -  + + - -  

4 - -  + - -  + + - -  + - -  + - -  

5 + - -  - -  + 

6 + + + + + + + + + + + + + + + + 

7 + - + - + - + + + + + + + - 

8 - + + + - + - + - + - - 

9 + + + + + + + + + + + + + + + + 

1 0  - + - + + - + - 

l l  - ~ + + + + - - 

1 2  - + - + + - + - 

1 3  - + - + + + + - 

1 4  - + + - + - + + - + 

1 5  - + + - 

" - ,  A l w a y s  r e g u l a r ;  + ,  t r a n s i t i o n  t o  c h a o s .  
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each site obeys a K-input AND rule, show extreme ordered behavior. Alter 
a short transient almost all sites are found to be t?ozen in the zero state. 

In Fig. 3 we observe that in our model (which means with Kauffman's 
original long-ranged interactions) the final distance remains essentially zero 
['or p ~< 0.5, where the AND rule dominates the XOR rule. The transition 
seems to take place at p,. = 0.5. With increasing concentration p the final 
distance increases rapidly to d(T)=0.5, corresponding to the maximum 
degree of disorder, where only the XOR rule is present. 

We now consider all possible pairs of K = 2  input automata and 
examine if a transition to chaos takes place or not (for any value of p). 
Table II demonstrates clearly that besides the expected transition for the 
XOR rule and its complement rule 9 transitions are not uncommon at all 
in binary mixtures of K =  2 automata. 

Figure 4 depicts a semilog plot of the mean cycle length of a system 
described by a binary mixture of NOR( I )  and AND(8) automata at the 
concentration p = 0.8 as a function of the number of cells. As has usually 
been seen in the chaotic regime the increase of the cycle length is exponen- 
tial in the number of units. 

5. S U M M A R Y  

We have shown that the profound order found in K = 2  Kauffman 
networks, where each unit receives exactly two inputs, must be largely 
attributed to the fact that the interactions are chosen according to a 
unijorm distribution. We further demonstrated that this special choice 
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constitutes a singular case, preventing the model from showing its full rich- 
ness. This fact, however, might rise new biological discussions about the 
model. 
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